2,296 research outputs found

    The Kovacs effect in the one-dimensional Ising model: a linear response analysis

    Get PDF
    We analyze the so-called Kovacs effect in the one-dimensional Ising model with Glauber dynamics. We consider small enough temperature jumps, for which a linear response theory has been recently derived. Within this theory, the Kovacs hump is directly related to the monotonic relaxation function of the energy. The analytical results are compared with extensive Monte Carlo simulations, and an excellent agreement is found. Remarkably, the position of the maximum in the Kovacs hump depends on the fact that the true asymptotic behavior of the relaxation function is different from the stretched exponential describing the relevant part of the relaxation at low temperatures.Comment: accepted for publication in Phys. Rev.

    Bifurcation analysis and phase diagram of a spin-string model with buckled states

    Get PDF
    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. The two-dimensional version of the model has a similar phase diagram, which has been recently used to explain the rippled to buckled transition observed in scanning tunnelling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.Comment: 15 pages, 7 figure

    Understanding the dependence on the pulling speed of the unfolding pathway of proteins

    Full text link
    The dependence of the unfolding pathway of proteins on the pulling speed is investigated. This is done by introducing a simple one-dimensional chain comprising NN units, with different characteristic bistable free energies. These units represent either each of the modules in a modular protein or each of the intermediate "unfoldons" in a protein domain, which can be either folded or unfolded. The system is pulled by applying a force to the last unit of the chain, and the units unravel following a preferred sequence. We show that the unfolding sequence strongly depends on the pulling velocity vpv_{p}. In the simplest situation, there appears a critical pulling speed vcv_{c}: for pulling speeds vpvcv_{p}v_{c} it is the pulled unit that unfolds first. By means of a perturbative expansion, we find quite an accurate expression for this critical velocity.Comment: accepted for publication in JSTA

    Memory effects in vibrated granular systems

    Full text link
    Granular materials present memory effects when submitted to tapping processes. These effects have been observed experimentally and are discussed here in the context of a general kind of model systems for compaction formulated at a mesoscopic level. The theoretical predictions qualitatively agree with the experimental results. As an example, a particular simple model is used for detailed calculations.Comment: 12 pages, 5 figures; to appear in Journal of Physics: Condensed Matter (Special Issue: Proceedings of ESF SPHINX Workshop on ``Glassy behaviour of kinetically constrained models.''

    The Soviet Estimate: U.S. Intelligence Analysis and Russian Military Strength

    Get PDF

    Scaling and aging in the homogeneous cooling state of a granular fluid of hard particles

    Full text link
    The presence of the aging phenomenon in the homogeneous cooling state (HCS) of a granular fluid composed of inelastic hard spheres or disks is investigated. As a consequence of the scaling property of the NN-particle distribution function, it is obtained that the decay of the normalized two-time correlation functions slows down as the time elapsed since the beginning of the measurement increases. This result is confirmed by molecular dynamics simulations for the particular case of the total energy of the system. The agreement is also quantitative in the low density limit, for which an explicit analytical form of the time correlation function has been derived. The reported results also provide support for the existence of the HCS as a solution of the N-particle Liouville equation.Comment: 17 pages, 3 figures; v3 revised version (minor changes, corrected typos, v2=v1 due to a submission error)accepted for publication in J. Phys. A: Math. Theo

    Optimized LTE Data Transmission Procedures for IoT: Device Side Energy Consumption Analysis

    Full text link
    The efficient deployment of Internet of Things (IoT) over cellular networks, such as Long Term Evolution (LTE) or the next generation 5G, entails several challenges. For massive IoT, reducing the energy consumption on the device side becomes essential. One of the main characteristics of massive IoT is small data transmissions. To improve the support of them, the 3GPP has included two novel optimizations in LTE: one of them based on the Control Plane (CP), and the other on the User Plane (UP). In this paper, we analyze the average energy consumption per data packet using these two optimizations compared to conventional LTE Service Request procedure. We propose an analytical model to calculate the energy consumption for each procedure based on a Markov chain. In the considered scenario, for large and small Inter-Arrival Times (IATs), the results of the three procedures are similar. While for medium IATs CP reduces the energy consumption per packet up to 87% due to its connection release optimization
    corecore